What to do if your inner voice is cruel
video link I think chatter is one of the big problems we face as a species. We spend between one-third and one-half of our waking hours not living in the present. And what do we do during that time? We’re talking to ourselves. Your inner voice is your ability to silently use language to reflect on your life. Chatter refers to the dark side of the inner voice. When we turn our attention inward to make sense of our problems, we don’t end up finding solutions. We end up ruminating, worrying,...
对于加减无穷小替换的理解
对于无穷小替换第一个注意事项的举例说明 回顾: 题目 第一道题: 第二道题: 在极限计算中,加减法能否使用等价无穷小替换取决于替换后的主部是否被抵消以及误差项是否会影响结果。以下是两张图片的对比分析: 第一道题允许替换的原因 主部未被抵消 分子:arcsin2x2+eax2−1\arcsin 2x^2 + e^{ax^2} - 1arcsin2x2+eax2−1 arcsin2x2∼2x2\arcsin 2x^2 \sim 2x^2arcsin2x2∼2x2,eax2−1∼ax2e^{ax^2} - 1 \sim ax^2eax2−1∼ax2 替换后分子为 2x2+ax2=(2+a)x22x^2 + ax^2 = (2 + a)x^22x2+ax2=(2+a)x2,分母也是精确到x2x^2x2,主部未抵消。 分母:ln(1+2x2)∼2x2\ln(1 + 2x^2) \sim 2x^2ln(1+2x2)∼2x2 分子和分母主部均为同阶项(x2x^2x2),替换后极限化简为 2+a2\frac{2 +...
极限的运算法则
加法法则 如果 limx→af(x)=A\lim_{x \to a} f(x) = Alimx→af(x)=A 且 limx→ag(x)=B\lim_{x \to a} g(x) = Blimx→ag(x)=B,则: limx→a[f(x)+g(x)]=A+B\lim_{x \to a} [f(x) + g(x)] = A + B x→alim[f(x)+g(x)]=A+B 减法法则 如果 limx→af(x)=A\lim_{x \to a} f(x) = Alimx→af(x)=A 且 limx→ag(x)=B\lim_{x \to a} g(x) = Blimx→ag(x)=B,则: limx→a[f(x)−g(x)]=A−B\lim_{x \to a} [f(x) - g(x)] = A - B x→alim[f(x)−g(x)]=A−B 乘法法则 如果 limx→af(x)=A\lim_{x \to a} f(x) = Alimx→af(x)=A 且 limx→ag(x)=B\lim_{x \to a} g(x) =...
三角函数相关变换公式和数列求和公式
三角函数的全称和读音 sinx\sin xsinx 英文名称:Sine 英文读音:/saɪn/(“赛因”) 注:名称源于拉丁语 sinus(弯曲、海湾),中文“正弦”取自“正对的弦”。 cosx\cos xcosx 英文名称:Cosine 英文读音:/ˈkoʊsaɪn/(“扣赛因”) 注:余弦是“余角的正弦”,即 cosx=sin(π2−x)\cos x = \sin\left(\frac{\pi}{2} - x\right)cosx=sin(2π−x)。 tanx\tan xtanx 英文名称:Tangent 英文读音:/ˈtændʒənt/(“坦真特”) 注:名称源于拉丁语 tangere(接触),中文“切”指圆上切线。 cotx\cot xcotx 英文名称:Cotangent 英文读音:/koʊˈtændʒənt/(“扣坦真特”) 注:余切是“余角的正切”,即 cotx=tan(π2−x)\cot x = \tan\left(\frac{\pi}{2} - x\right)cotx=tan(2π−x)。 secx\sec...
日记
...
函数、极限、连续习题总结
麻蛋,入门练习这么难,做一题不会一题 type 1:无穷小等价代换 这一种就是看敏感度的,看出来用出来那就简单,看不出来就完蛋,多看看无穷小等价代换的公式,传送门 PS:多通过图形结合记忆,理解着记不容易忘,作图传送门 比如这一个sinx−x∼−x36\sin x - x \sim -\frac{x^3}{6}sinx−x∼−6x3,x−sinxx - \sin xx−sinx还是sinx−x\sin x - xsinx−x前边有正负号总是忘怎么办,x的图像是步步高升,sinx\sin xsinx的图像就在-1和1之间浮动,那x−sinxx- \sin xx−sinx的图像肯定也是步步高升 type2:两个常用极限的运用 第一个极限就算了,跟凑数一样,看这一个 limx→∞(1+1x)x=e\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x =...
How to Turn Setbacks into Success
video link Think back to your biggest setback. Not an obstacle, not a mistake. A setback is defined as a reversal or check in progress. It’s when you’re on a path, you’re moving forward, and you are unexpectedly bumped backwards. Through all my years as a journalist, I have interviewed hundreds of founders, business leaders, senators, celebrities, cultural icons. And in every interview, I saw a common theme. What they learned during their biggest setback led them to their most successful...
日记
...
常用的求导公式
一、基本初等函数的导数公式 常数函数 f(x)=C⇒f′(x)=0f(x) = C \quad \Rightarrow \quad f'(x) = 0f(x)=C⇒f′(x)=0 幂函数 f(x)=xn⇒f′(x)=nxn−1f(x) = x^n \quad \Rightarrow \quad f'(x) = n x^{n-1}f(x)=xn⇒f′(x)=nxn−1 指数函数 f(x)=ex⇒f′(x)=exf(x) = e^x \quad \Rightarrow \quad f'(x) = e^xf(x)=ex⇒f′(x)=ex f(x)=ax⇒f′(x)=axlna(a>0,a≠1)f(x) = a^x \quad \Rightarrow \quad f'(x) = a^x \ln a \quad (a > 0, a \neq 1)f(x)=ax⇒f′(x)=axlna(a>0,a=1) 对数函数 f(x)=lnx⇒f′(x)=1xf(x) = \ln x \quad \Rightarrow \quad f'(x) =...
日记
...
